User Interface Design Assistance

For Large-Scale Software Development

Gregory Alan Bolcer
University of Southern California
Center for Software Engineering!

Los Angeles, CA 90089
E-mail: gbolcer@sunset.usc.edu

+1.714.725-2704

ABSTRACT

The User Interface Design Assistant (UTDA) addresses
the specific design problems of style and integration
consistency throughout the user interface development
process and aids in the automated feedback and eval-
uation of a system’s graphical user interface according
to knowledge-based rules and project-specific design ex-
amples. The UIDA system is able to quickly identify
inconsistent style guide interpretations and Ul design
decisions resulting from distributed development of mul-
tiple UI sub-systems. This case arises when each sub-
system conforms to the general style guide rules, but
when integrated together, may appear inconsistent.

KEYWORDS: user interface design assistance, style
guidelines, project integration, style inconsistency,
large-scale software, distributed development.

OVERVIEW

A User interface style guide is a collection of heuristical
knowledge forming general rules for the creation of an
interface for a software application. Because this knowl-
edge is accumulated over the course of tens or hundreds
of projects, 1t may be too general for application to spe-
cific design contexts and real design problems. User in-
terface designers often miss many critical concepts and
details[12], and completeness and consistency are often
overlooked when checking for adherence. This problem
stems from the abundance of GUlI-specific style guides
[1][2][3], the difficulty the UT designer has interpreting
these general guidelines [12], and the overwhelming diffi-
culty the Ul designer has referencing and applying these
guidelines in their daily work[8].

The key objective of the User Interface Design Assis-
tant is to assist project personnel in the automated use
of expert knowledge in the design and implementation

1This work was conducted jointly at the University of South-
ern California’s Center for Software Engineering, and the Arcadia
Project, University of California Irvine.

of toolkit-based graphical user interfaces throughout
the lifecycle of large-scale software engineering projects.
The UIDA approach is unique because the knowledge-
base addresses specific concerns that arise from dis-
tributed development. By looking at a system’s user
interface design beyond one dialog box at a time, the
UIDA system 1s able to use the knowledge-base to syn-
thesize a consistent design when integrating discon-
nected elements of a system.

The knowledge that is used to enforce style guide ad-
herence and consistency may be supplied from cus-
tomers, human-factors engineers, and other project de-
velopers. Software system customers can provide knowl-
edge about the workplace environment, projected usage,
target platforms, display characteristics, or any other
requirements that may effect the user interface design.
User interface style and project-specific information can
also be encoded into the knowledge-base to form project
or company-wide guidelines allowing interactive design
exploration using the UIDA system while maintaining
adherence.

The format of the knowledge is both rule-based for
capturing general constraints between graphical objects
and example-based for allowing specification of design
criteria (possibly by non-technical end-users of the sys-
tem with the aid of a knowledge engineer). The UTDA
knowledge-base does not form a mutually consistent set
of guidelines, and in fact, a large portion of the rules
are contradictory. The function of this system is to aid
in the design of a graphical user interface that adheres
to as many style rules as possible while making explicit
any rule contradictions.

The UIDA system is integrated with Sun Microsystem’s
DevGuide? through the use of its Guide Interface Lan-
guage (GIL), and allows a common reference point for
evaluating and customizing user interface requirements
throughout the course of a project or even across multi-
ple projects or versions. This is accomplished by explic-

2A commercial direct manipulation user interface design and
specification layout tool for building Open Look(tm) applications

itly stating project style guidelines in an OPS5-like®[5]
rule format that allows the conditions of the rule to
identify inconsistent layout, sizing, color, and presenta-
tion, and the actions of the rule to generate alternative
UI designs that are consistent with the evolving design
specification or project specific design cases.

The automated use of the knowledge allows feedback to
the developers at the various stages of the project de-
velopment.

Requirements: The knowledge-base can be provided
by the customer to constrain the GUI design space avail-
able to the contractor ensuring that conventions and
appropriate usage models are consistent with what is
currently being used within the customer’s company at
large.

Rapid Prototyping: System prototypes can be
rapidly created and evaluated while conforming to over-
all UI requirements. This helps capture all of the bene-
fits of rapid prototyping with less of a chance of incur-
ring a “throw away” cost.

Design Review and Integration: Inconsistencies
created by integration of project sub-systems can be
easily identified, reconciled, and recorded.
Acceptance Testing: There is more solid communica-
tion between the customer and the contractor through
the sharing of the knowledge-base resulting in less
chance of the customer asking for a Ul revision.

The principal means for addressing these issues is ac-
complished in the UIDA system through a combina-
tion of analytical critiquing[6], where the user interface
is evaluated with respect to possible flaws, differential
critiquing[8], where the system generates its own solu-
tion and compares it to the interface created by the
designer by pointing out differences, and advisory cri-
tiquing, where the designer is notified of a change that
couldn’t be accomplished because of conflicts or con-
straints even though the change would improve the eval-
uation of the interface according to the style guide cri-
teria. It is important to note that researchers have ar-
gued (Lowgren and Nordqvist[8]) that critiquing in the
domain of user interface design is not eligible for differ-
ential treatment because, in general, there are many ex-
amples of alternative solutions with equal validity. The
UIDA system addresses this issue by generating design
alternatives that are limited to what can be found in
other sub-system UI designs within the project or in
specific graphical examples of desired Ul designs. If no
solution can be generated by the UIDA, an advisory
notification is given to the designer.

3 A common rule-based syntax for expressing knowledge.

UIDA APPROACH

The UIDA system uses knowledge and rules to satisfy
design principles within a set of objects or consistency
checking between several sets of objects. The UIDA
knowledge-base contains representations for user deci-
sions, rule application history, user interface objects and
their attributes, and grouping information for group-
ing objects into a project or rules into a family. The
rule-base utilizes this knowledge to initiate actions and
make intelligent decisions about a user interface. Rules
fall into three categories: interaction, identification,
and resolution. Interaction rules serve to provide help,
browsing, querying, and warning functions to the user;
identification rules embody the style guide principles in-
cluding layout critiquing and consistency checking; res-
olution rules handle user interface object manipulation
and attribute assignment.

The level of abstraction that the UIDA reasons about
consistency and layout is at the frame and panel level
which correspond to a graphical window and the area
inside the window. The UIDA takes an inductive ap-
proach to managing consistency (see figure 1). Fach
frame is first critiqued according to the knowledge-base
as a standalone application. Once all the frames have
been filtered through the style guide knowledge-base,
consistency across frames can take place. The UIDA
makes the assumption that objects within a frame or
panel are semantically related to some user task and
therefore are grouped together. Similarities between
windows are measured by the intersection of the labels,
the types of the objects, and the alignment and place-
ment policies. When an intersecting set is found be-
tween two or more frames, inclusion, exclusion, and in-
consistency information is generated about the UI. The
resoultion rules are then applied to a single frame to
determine what changes to make, if any, and only if
the user approves them. The frame 1s then annotated
with a set of inconsistencies, a set of rules applied to
the frame, and a set of user decisions in response to
the rules. After doing this on a frame-by-frame basis,
the system will have a series of decisions recorded as
explicit design decisions. As integration of the project
proceeds, new frames can be added. When conflicting
design decisions are identified, they are brought to the
integrator’s attention.

The UIDA knowledge-base also contains a collection of
meta-rules for recommending rule applications to the
user, providing conflict identification support, and cus-
tomizing various levels of automated conflict resolution.
Meta-rules also encode the knowledge that the succes-
ful application of one Ul style guide rule may contradict
the successful application of another.

Base Case (frames 1..N):
Style Guide Base Case:
Recommend by context rules to apply: Rules C AllRules
YV F &€ Frames do:
VY R € Rules do:
A: apply R to F
Record A(R, F) as
Approved: annotate F with (R,+)
Rejected: annotate F with (R,-)
Approved w/ Inconsistency:
annotate F with (R,+)

annotate F with Object Inconsistencies

Inductive Case (frame N + 1):
Inconsistent Objects:

If Fy satisfies Base Case, O1 C Fy,

3 F; satisfies Base Case, Oz C Fy,

Then V(o1 € O1,02 € Oz st. 01 ~ 02) do:

Notify User of proposed changes to Os:
Rejected: annotate Project with Frame Inconsistencies
Approved: Change O1, Recheck Fi satisfies Base Case

Inconsistent Styles:
If 3Fy, Fy st. satisfy Base Case,
Fi, F> annotated with rules Ry, Ra,
R1, Ry are incompatible
Notify User of conflict and propose reapplication of R;:
Rejected: annotate Project with Frame Inconsistencies
Approved: Re-apply A:(Ri, F1) or A:(R:, F»),
Recheck Inconsistent Styles

Figure 1: Inductive Integration

UIDA IMPLEMENTATION
Knowledge-Base

Style and layout knowledge-base rules are separated into
families. A family of rules corresponds to a directory of
files, each file containing 1-4 related rules. Because the
rules are located in files, the knowledge-base is easily
browsed using a standard graphical desktop file man-
ager. In the case of the UIDA system, the Open Win-
dows’ file manager is provided for ease of use.

In addition to the style and layout rules, the UIDA pro-
vides consistency and integration rules that can be en-
abled when integrating sub-systems. Some rules pro-
vide a means for recognizing project inconsistencies even
though the individual interfaces comply to the style
guidelines or rules. A detailed example of this can be
seen in figure 2. The three frames are taken from a
system [14] where each component was built by a dif-
ferent designer for a different part of the overall system.
For each frame, the designer has chosen to ignore one
or more style guide principles. For example, all three
frames don’t include either a “Quit” or “Done” button.
These decisions are then stored with each of the frames
to be used later for inconsistency and conflict detection.
Once these frames are integrated into the project, the
designer can then check for system-wide inconsistencies.
For the frames in the example, the following integration
conflicts are brought to the designer’s attention that
could not be detected before integration (frames are re-
ferred to left-to-right by F'ramey, Frames, andFrames:

e The Field Class object in F'rame; is implemented
as a different type than FramesandFrames.

e The layout algorithm for the text fields between the
frames is left-aligned in F'rame;, and colon-aligned
in the others.

e The frame sizes don’t correspond well to the num-
ber of objects present within them. Frames con-
tains five objects but has a smaller area than
Frames which contains only four objects with the
similar labels.

e The length of the text fields is different across all
three frames.

e The ordering of the fields is switched between
frames.

e Frames and F'rames are missing a Default Value
field, or else F'rame; has included extraneous ob-
jects. Several warnings are also given concerning
the inclusion and exclusion of the buttons Ap-
ply, Insert in List, Reset, and Hide across the
frames.

Field Definition r,J Field Definition

Name:.

Field Class:
Type:

Family:

r & Field Definition 1=
Field Class: Single Shared | Multi Hide
Name: Name:
Type: Field Class:
Family: Type:
Default Value: Family:

= | demod
Apply Insert in List Reset
, demoG

demo.G

Figure 2: Example Inconsistencies

Architecture

The UIDA system is part of a larger collection of de-
sign and runtime user interface development tools[11],
although its bottom-up approach and file-based inte-
gration allow i1t to be used as a stand alone system.
The UIDA system adopted DevGuide’s notion of graph-
ical interface language files (GIL) and project files as
means of specifying Ul descriptions. Each project has
a project description file (“projectname.P”), a list of
interface description files (“filename.G”) and an associ-
ated rule-action list for storing design choices and other
information (“projectname.A”). These files are read-in
and written-out as the result of meta-rules triggered by
the inference engine whenever a current working file is
selected. While GIL allows a straightforward integra-
tion with the inference engine and knowledge-base, it is
not a general object description language. This causes
some GlL-specific dependencies in the rule syntax as
seen in figure 3.

Once Ul designers save their interface files in the GIL
format, these files can be read into the lisp environ-
ment and treated by the UIDA as a list of graphical
objects. Changes are made to object attribute values in
the working memory of the inference engine. To view
the changes, the objects are written out to a file in the
GIL format and then re-read into DevGuide to allow
for side-by-side comparison. The inference engine is
designed to execute OPS5-like rules and contains ap-
proximately 1200 lines of lisp code. It is interesting
to note that because GIL is a relatively high level de-
sign language, various programming languages (other
than lisp) and runtime architectures can be generated
from the user interface designs that are evaluated and
changed using the UIDA system. This is accomplished
through DevGuide’s separation of implementation and
design as well as the loose file-based integration between
DevGuide and the inference engine.

Families of rules correspond to specific directories con-

taining several related files. Each file may contain sev-
eral rules that share the same style or consistency guide-
line expressed as a combination of conditional pattern
matching and procedural knowledge represented by a
lisp function. A single rule file contains all the rule-
based and procedural knowledge that is needed to find
and correct the single specific style and integration in-
consistency. The one exception to this is the shared
meta-rules which are loaded in with all rule sets and
provide mechanisms for reading in objects, identifying
conflicts, handling the level of automation support, and
handling of messaging information (i.e. which family or
style guide the rule belongs to).

User Interaction

Because the integration between the knowledge-base,
DevGuide, and the inferencing engine is file-based,
users need to explicitly load in rules and interface files.
Project and interface description (GIL) files are loaded
through a call to ‘set-working-file’. The designer deter-
mines the level of change the system is allowed to make
to the interface after a conflict is found by setting the au-
tomation level to LOW for generating warnings, MED
for asking the user to confirm the change, and HIGH
for always making the change if a solution is possible.
To aid the designer in remembering and choosing rules
to apply, the UIDA system provides meta-rules. These
rules (at the prompting of the user through a ‘recom-
mend’ function) provide a list of families of style guide
rules. The user can then easily browse and choose rules
to apply from that family.

Figure 4 shows an excerpt of the output from the appli-
cation of the “inconsistent-ordering” rules to an exam-
ple project. The level of automation in this case defaults
to HIGH. The working file is set to “order-project.P”,
a project file containing two completed interface files
“order-demo.G” and “order-demo2.G” as seen in fig-

rﬂ Base Window

Quit] File 3 Help]

System |

T

Base Window

System | Help |

File ! Quit]

, order—demo.G

, order—demo2.G

Figure 5: Before UIDA Changes, Inconsistent Ordering

ure 5. Because some of the graphical objects have labels
that are the same, the recommended rule list includes
the order family. Loading and running the order-switch
rules from the order family then results in the following
interaction. Once the changes are made, the user prints
the file out, reads it into Dev(Guide and compares the be-
fore and after views of the interface side-by-side as seen
in figures 5 and 6. If the change is satisfactory, then the
designer initiates a Save-Change saving the changes to
the working-file.

The method of rule application is incremental, allowing
the designer to iteratively refine the design of the user
interface through a series of small, consistent changes.
This approach prevents the user from getting a design
back that 1s “unrecognizable” by allowing each change
to be vetoed. Also, conflicts are immediately identified,
and various courses of action represent explicit design
decisions that can be recorded and compared with other
sub-components of the project. Referring again to fig-
ures b and 6, in addition to the consistent ordering rules,
the designer can apply another rule to the project that
causes the “Help” button to always be the rightmost
button. Note that when these two rules are applied in-
crementally, the UIDA system brings to the attention
of the designer that a conflict may arise if the second
rule is allowed to continue with the suggested changes.
This is because the rule that re-orders the buttons may
not preserve the previous application of the help but-
ton positioning. To overcome this conflict, the designer
can apply multiple rule sets by invoking Add-Ruleset.
In this way, two rules that may conflict with each other
can be considered simultaneously. If later in the devel-
opment lifecycle of the project a new button is required
as a result of a design change, previously matched rules
can be easily re-checked using the UIDA system, and
if a conflict is found, it is brought immediately to the

attention of the designer.

EXPERIMENTAL RESULTS

Because DevGuide 1s a commercial tool, the UIDA sys-
tem has the ability to critique “real-world” user in-
terfaces. To evaluate the effectiveness of the UIDA
knowledge-base, several medium-size software projects
([71,[10]) developed using DevGuide were critiqued us-
ing the Design Assistant (only one of which will be dis-
cussed in detail). In addition, to evaluate the claim
that knowledge-based approaches that provide even par-
tial solutions can have a large impact on quality and
productivity[4], the UIDA system was empirically eval-
uated on issues of usability and ease of knowledge-
application. Described in the balance of this section
are the results of these experiments.

KBRA (Knowledge Based Review Assistant[7]) is a tool
designed to assist a software project review coordi-
nator in preparing a formal code review. This sys-
tem encompasses about 350 graphical toolkit objects
spread across 15 different windows built by two de-
velopers. The implementation of the design is com-
piled into 14-KLOC (thousand-Source-Lines-Of-Code)
approximately 85% of which is generated user interface
code. Of the 72 total rules, 15 rules were triggered one
or more times. Of these 15 rules, 9 could be construed
as legitimate design choices while the other 6 were side
effects of the developer’s choice to use graphical objects
for their “look” rather than their functionality. For
instance, the developers decided to use arrows in one
of the panels that were made up of empty text-fields
and message fields. This flagged several alignment, lay-
out, and labeling rule violations. Overall, 14% of the
graphical objects were either manually or automatically

r‘ﬂ Base Window

Quit] Fila) System | Help

k)

Base Window

Quit] Fila J

System | Help]

, newi—order—demo.G

, hew—order—demao.G

Figure 6: After UIDA Changes, Consistent Ordering

changed to conform to style and integration rules.

The second part of the experiment was to allow the
use of the UIDA by several design groups to evalu-
ate the robustness of the knowledge-base and the ease
which the developer could apply it. The subjects for
the experiment were undergraduate computer science
students working on the design of a Traffic Control and
Management System for a software engineering class.
Two project teams chose to participate (4 members per
group). Each team member was responsible for design-
ing some portion of the user interface using DevGuide.
Once all the members saved their Ul designs into the
project file, one member from each team sat down un-
der supervision to use the UIDA system.

As mentioned before, because the UIDA system is
loosely integrated, some of the methods of interaction
are cumbersome. Uniformly, both students had some
degree of the difficulty in using the system which could
easily be remedied with the introduction of a graphi-
cal user interface for loading and running rules. Also,
when a rule was applied, the recap of the style guide-
lines from which the rule originated often didn’t pro-
vide enough information for the students. They often
requested an explanation as to how the rule went about
matching to their specific interface. It is important to
note that although both subjects had a fair amount of
programming expertise, neither had any previous expe-
rience with “principles of good user interface design”.
The issue of whether one needs to be a human factors
expert in order to effectively apply human factors knowl-
edge correctly should be addressed in a more controlled
experiment (along the lines of [9][13]). As in the pre-
vious experiment, several rules could also be ignored
because of design decisions on the part of the students.
For instance, DevGuide allows the association of tex-

tual help for each panel area, thus the rule checking for
the existence of help flagged several violations. Also,
because of the small number of rules that actually trig-
gered, the UIDA system wasn’t able to identify any con-
flicts in the applications of these rules to the interface
descriptions.

On the encouraging side, both students found the rule
browsing and meta-rules useful for choosing rules for
application. Both students found the rules for align-
ment and layout corrections useful for portions of the
user interface where not enough attentiveness to detail
was applied to the design. In addition, between the
projects, two integration inconsistencies where found.
One project had two buttons located on different win-
dows (designed by different people) that shared the
same label even though they represented different func-
tionality. On the other project, the location and or-
dering of several “Apply” and “Done” buttons differed
across windows.

SUMMARY AND CONCLUSIONS

The most important difference between current sys-
tems and the UIDA system is the emphasis on ad-
dressing problems that arise when scaling the technique
of knowledge-based design assistance to large-scale and
distributed development of user interfaces. Because a
priori style and consistency rules are difficult to specify
in this setting, the focus of the design assistance should
be on conflict resolution and consistency. In addition,
the incrementality of the knowledge-base allows the his-
tory of decisions made by the designer (through rule
applications) to be explicitly recorded allowing for easy
identification of user interface design decision conflicts.
Meta-rules for recommending style guide rule applica-

(make-production
:name ’x-reorder-objects
:conditions ’((order) (automation HIGH)
;3 GIL Dependent
(:type 7type :name 7name
:owner 7owner

thelp 7help

1X 7x 1. begin

vy

other-values) 2. get-all-objects

(:type 7type2 :name 7name2
:owner 7owner
thelp 7help2

Found Project file: order-project.P

3. get-objects

. ?
;§ %;2 Reading Objects from order-demo2.G
'other-values?2)
(:type 7typed :name 7name3 4. get-objects
rowner ?owner3 Reading Objects from order-demo.G
thelp 7help3
ix 7x3 5. x-reorder-objects
iy 7y3 Switching:
tother-values3) button7 and buttoné

(:type 7typed :name 7name4 to match order of

. ?
sowner 7owner3 button3 and button2

thelp 7help4

1x 7x4
L] L] L]

1y 7y3

'other-values4)
;3 end GIL Dependent M
(*ig-pitem 7type)
(*ig-pitem 7type2) LI
(*¥ig-pitem 7type3)
(*ig-pitem 7typed)
(*¥unequal 7name 7name2) 10. x-reorder-objects
(*¥unequal 7name3 ?name4) Switching:
(*¥unequal ?owner 7owner3) button7 and buttonb
(%< 7x 7x2) to match order of

(%< 7x4 7x3)

(*¥label-equal 7other-values Tother-values3)

(*label-equal 7other-values2 7other-values4))
tactions ’(

($write-line* "Switching: ")

button3 and buttonl

11. halted.

($wr%te—1%ne* " " 7name " and " 7name2) Figure 4: Example Output Messages
($write-linex* " to match order of ")
($write-linex* " " ?name3 " and '"7name4)

($switch-x 7name 7name?2))
:number ’3)

Figure 3: Example Rule Syntax

tions are helpful for non-experts. Also, by designing
the knowledge-base with concern for integration, the
problem of generating a solution through differential cri-
tiquing becomes more manageable by conforming to an
explicitly provided design example or an evolving design
specification in another Ul sub-component. The UIDA
system represents a methodology for addressing large-
scale user interface issues for applying design knowledge,
and the author encourages other researchers to expand
on the approaches identified in this paper that address
these areas of concern.

ACKNOWLEDGEMENTS

The author would like to thank Barry Boehm, Prasanta
Bose, and Richard Taylor for their comments and guid-
ance on both this paper and project, Jonas Lowgren for
sharing the KRI/AG knowledge-base, Debra Richard-
son for use of her undergraduates as test subjects, and
all those who donated design code for evaluation.

References

[1] OSF/Motif Style Guide. Cambridge, MA, 1.1 edition, 1988.

Open Software Foundation.

[2] OPEN LOOK Graphical User Interface Application Style
Guidelines. Sun Microsystems, Inc.; Addison-Wesley, 1990
edition, 1989.

[3] Defense information systems agency human computer inter-
face style guide. Style guide, Center for Information Man-
agement, Feb. 1992. Version 1.0, 200 pages.

[4] B.Boehm. Notes on a knowledge based software architecture
assistant. Notes, U.S.C. Center for Software Engineering,
Jan. 1992. 18 pages.

[5] L. Brownstone and et al. Programming Expert Systems in
OPS5, volume 1 of Artificial Intelligence. Addison-Wesley,
Jan. 1986.

[6] G. Fischer, A. C. Lemke, and T. Mastaglio. Using critics to
empower users. In Proceedings of CHI 90, pages 337—-347,
Seattle, Washington, Apr. 1990.

[7] J. Liao and J. Hsieh. Knowledge-based review assistant.
Project, U.S.C. Center for Software Engineering, 1993. 15
pages.

[8] J. Lowgren and T. Nordqvist. Knowledge-based evaluation
as design support for graphical user interfaces. In Proceedings
of CHI ’92, pages 181-188, Monterey, California, May 1992.

[9] J. Nielsen. Finding usability problems through heuristic eval-
uation. In Proceedings of CHI ’92, pages 373—-380, Monterey,
California, May 1992.

[10] D. Richardson and et al. Developing and integrating prodag
in the arcadia environment. In ACM SIGSOFT, pages 109—
119, Tyson’s Corner, Virginia, USA, Dec. 1992.

[11] R. N. Taylor and G. F. Johnson. Separations of concerns
in the chiron-1 user interface development and management
system. In Proceedings of INTERCHI ’93, pages 367—374,
Amsterdam, The Netherlands, Apr. 1993.

[12] L. Tetzlaff and D. R. Schwartz. The use of guidelines in
interface design. In Proceedings of CHI ’91, pages 329-333,
New Orleans, Louisiana, Apr. 1991.

(13]

(14]

H. Thovtrup and J. Nielsen. Assessing the usability of a
user interface standard. In Proceedings of CHI ’91, pages
335-341, New Orleans, Louisiana, Apr. 1991.

P. S. Young and R. N. Taylor. Human-executed operations in
the teamwaree process programming system. In Proceedings
of the Ninth International Software Process Workshop, Jan.
1992.

